Physical source realization of complex source pulsed beams

Ehud Heyman\textsuperscript{a)a) and Vitality Lomakin

Department of Electrical Engineering-Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel

Gerald Kaiserb)

The Virginia Center for Signals and Waves, 1921 Kings Road, Glen Allen, Virginia 23060

(Received 24 June 1999; accepted for publication 21 December 1999)

Complex source pulsed beams (CSPB) are exact wave-packet solutions of the time-dependent wave equation that can be modeled mathematically in terms of radiation from a pulsed point source located at a complex space–time coordinate. In the present paper, the physical source realization of the CSPB is explored. This is done in the framework of the acoustic field, as a concrete physical example, but a similar analysis can be applied for electromagnetic CSPB. The physical realization of the CSPB is addressed by deriving exact expressions for the acoustic source distribution in the real coordinate space that generates the CSPB, and by exploring the power and energy flux near these sources. The exact source distribution is of finite support. Special emphasis is placed on deriving simplified source functions and parametrization for the special case where the CSPB are well collimated. © 2000 Acoustical Society of America. [S0001-4966(00)00804-3]

PACS numbers: 43.20.Px, 43.20.Bi, 41.20.Jb, 03.50.–z [ANN]

INTRODUCTION

Complex source pulsed beams (CSPB) [also termed pulsed beams (PB) or isodiffracting PB] are exact wave-packet solutions of the time-dependent wave equation that can be modeled mathematically in terms of radiation from a pulsed point source located at a complex space–time coordinate.1–3 Their properties, namely their direction, collimation, and space–time width, are determined by the complex source coordinates. Physically, however, these solutions are generated by physical source distributions (derived in this paper); hence, the complex source model may be considered as a mathematical trick to obtain compact field solutions due to these source distributions. This complex source approach has been originally introduced in the context of time-harmonic fields.4–7 Another approach to derive the CSPB has been derived independently in Ref. 8.

The CSPB have many properties that make them favorable wave objects within a general wave-based approach for forward and inverse problems:

(1) They are convenient wavelets for high-resolution probing of the propagation environment, and may be used to selectively excite local scattering and diffraction phenomena (see items 2 and 4 below).

(2) They provide benchmark solutions for scattering of collimated wave packets by canonical configurations,9–11 for propagation in inhomogeneous media,12,13 in dispersive media,14–16 and in random media,17,18 or can be used to model practical systems involving collimated short-pulse fields.19–22

(3) They furnish a complete basis for local observable-based spectral synthesis of general transient fields, providing a \textit{a priori} localization (since only those PB propagators that pass near the space–time observation point need to be accounted for). Several expansion schemes which apply to different source configurations have been derived in Refs. 23–28.

(4) Finally, in view of these properties the CSPB are well-suited to wave-based data processing and local inverse scattering.29,30

The space–time localization described above provides a systematic wave-based approach for dealing with global complexity. Concentrating on localized solutions permits the use of specific well-defined “simpler” problems from which global solutions are assembled. The CSPBs not only provide simple local wave solutions, but may also be directed in space–time to interrogate a particular subenvironment or wave phenomenon in the global conglomerate.

Other classes of wave-packet solutions \textit{in free space} have been introduced in various disciplines. The basic ones are: solutions based on Brittingham’s “focus wave modes,”31–34 “nondiffracting beams” or “X-waves,”35,36 and “bullet”-type solutions.37,38 These solutions have not yet been utilized in a full “wave-based architecture” as described above.

As has been pointed out previously, the CSPB can be generated by a finite distribution of \textit{physical sources}.2 Our aim in the present paper is to explore this physical source realization. This is done here within the framework of the acoustic field which provides a concrete physical example, but a similar analysis can be applied for electromagnetic CSPB. The physical realization of the CSPB is addressed by deriving expressions for the acoustic source distributions and by exploring the power and energy flux around these sources. The finite support source functions obtained give rise to the \textit{globally exact} CSPB. Yet, from a practical point of view, as discussed in the preceding paragraph, special emphasis is given to the parameter range where the CSPB are well collimated so that they maintain their localized wave-packet structure while propagating in the ambient en-
environment. In this special case the CSPB can be realized effectively by a truncated source distribution whose spatial support is much smaller than that of the exact CSPB. The collimated PB fields generated by the truncated aperture resemble the exact CSPB near the beam axis, but deviate from it in far off-axis region, where they are both negligible anyway.

The presentation starts with a brief summary of the relevant acoustic field equations (Sec. I) and of the basic properties of the CSPB (Sec. II). The physical realization is then explored in Sec. III from the point of view of the power and energy flow. The expressions for the source distributions are then derived in Secs. IV and V, starting with the formulation of general schemes for constructing source realizations and then applying them to calculate the CSPB sources. The presentation ends with a summary and conclusions.

I. ACOUSTIC FIELDS AND SOURCES

The linear acoustic equations for the pressure field \(p(\mathbf{r},t) \) and velocity field \(\mathbf{v}(\mathbf{r},t) \) at the space–time point \(\mathbf{r} = (x,y,z) \in \mathbb{R}^3 \) and time \(t \in \mathbb{R} \) are

\[
\frac{1}{c^2 \rho} \partial_t p + \nabla \cdot \mathbf{v} = \sigma, \tag{1.1a}
\]

\[
\nabla \partial_t \mathbf{v} + \rho \nabla p = \mathbf{f}, \tag{1.1b}
\]

where \(\sigma(\mathbf{r},t) \) and \(\mathbf{f}(\mathbf{r},t) \) represent the scalar particle injection source distribution and the force distribution, respectively. Here, \(c = 1/\sqrt{\rho \mathcal{Q}} \) is the wave speed in the medium, \(\kappa \) and \(\mathcal{Q} \) being the compressibility and density, respectively. In this paper we consider radiation in a uniform medium and, without loss of generality, we assume that \(\mathcal{Q} = 1 \). Henceforth, we use boldface type to denote vector constituents and a \(\mathbf{v} \) over a vector to denote a unit vector.

Assuming sources bounded in a volume \(V \) of finite support, the integral solution of (1.1) is

\[
p = \int_V d^3 \mathbf{r} = \frac{1}{4 \pi R} \left[\sigma(\mathbf{r}) + \frac{1}{c} [\mathbf{f}] \cdot \frac{\mathbf{R}}{R} + \frac{1}{R} [\mathbf{f}] \right], \tag{1.2}
\]

where \(\mathbf{R} = \mathbf{r} - \mathbf{r}' = \mathbb{R} \frac{\mathbf{R}}{R} \) and \([F] \) denotes the retarded value \(F(\mathbf{r}',t') \mid t'=t-R/c \) for any function \(F(\mathbf{r}',t') \). Here and henceforth, overdots and overcircles denote time derivatives and unite vectors, respectively. The solution for \(\mathbf{v} \) is readily inferred from \(p \).

II. COMPLEX SOURCE PULSED BEAMS (CSPB)

A. The complex source coordinates

Let the source in (1.1) be

\[
\mathbf{f} = 0, \quad \sigma = 4 \pi \delta(\mathbf{r} - \mathbf{r}') \psi(t - t'), \tag{2.1}
\]

where \(\mathbf{r}' \in \mathbb{R}^3 \) and \(t' \in \mathbb{R} \) define the space–time source coordinates and \(\psi \) is a given time signal. From (1.2), the solution is

\[
p(\mathbf{r},t) = \psi(t - t' - R/c)/R. \tag{2.2}
\]

The CSPB is modeled analytically by extending the source coordinates \((\mathbf{r}',t') \) (2.1) into the complex domain. These coordinates may be expressed in general as

\[
\mathbf{r}' = \mathbf{r}_0 + i\mathbf{b}, \quad |\mathbf{b}| = b, \tag{2.3a}
\]

\[
t' = t'_r + it'_i, \quad t'_i \geq b/c, \tag{2.3b}
\]

where \(\mathbf{r}_0 \) is a real coordinate point that defines the center of the beam waist, \(\mathbf{b} \) is a real vector that defines the beam direction, and \(b > 0 \) is a constant which is interpreted as the collimation distance of the beam [see the discussion after (2.19)]. The condition on \(t'_i \) in (2.3b) will be explained after (2.13). Without loss of generality, we shall assume henceforth that

\[
\mathbf{r}_0 = 0 \quad \text{and} \quad \mathbf{b} = \hat{\mathbf{b}}, \quad \text{i.e.,} \quad \mathbf{r}' = (0,0,i\mathbf{b}), \tag{2.4a}
\]

\[
t' = ib/c. \tag{2.4b}
\]

B. Properties of the complex distance \(s(\mathbf{r}) \)

In order to extend (2.2) to the complex source case, we must first extend the definition of the distance \(R \) of the observer from the source. We define this distance as

\[
s(\mathbf{r}) = \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}, \tag{2.5a}
\]

\[
= \sqrt{\rho^2 + (z-ib)^2}, \tag{2.5b}
\]

\[
= s_r + is_i, \tag{2.5c}
\]

where (2.5a) is the general definition while (2.5b) corresponds to the special choice of the complex source coordinates in (2.4a), with \(\rho = \sqrt{x^2 + y^2} \). The branch of the complex root in (2.5) is chosen with

\[
\text{Re} \ s > 0. \tag{2.6}
\]

This choice implies that \(s \to r \) as \(b/r \to 0 \) [see (2.21)]. Other properties of \(s \) will be discussed next, where without loss of generality we consider the choice of \((r',t') \) in (2.4).

The set of branch points of \(s \in \mathbb{R}^3 \) is the circle \(\mathcal{B} \) in the \(z=0 \) plane, defined by \(\sqrt{x^2 + y^2} = b \). In order for \(s(\mathbf{r}) \) to be a single-valued function of \(\mathbf{r} \), we choose a branch cut in \(\mathbb{R}^3 \). The choice implied by (2.6) is a flat disk (Fig. 1)

\[
\mathcal{E}_0 = \{ \mathbf{r} : x^2 + y^2 \leq b^2, z = 0 \}, \tag{2.7}
\]

although any continuous deformation of \(\mathcal{E}_0 \) leaving its boundary \(\mathcal{B} \) invariant will do the same.

The real and imaginary parts of \(s = s_r + is_i \) have distinct physical roles. They can also be used as the natural coordinate system for the CSPB. For a given point \(\mathbf{r} \in \mathbb{R}^3 \), one finds

\[
(\rho,z) = b^{-1}(\sqrt{b^2 + s_r^2}, \sqrt{b^2 - s_r^2}, -s_s,i),
\]

where \(s_r > 0, -b < s_s < b \). \tag{2.8}

Equation (2.8) defines an oblate spheroidal (OS) system \((s_r, s_s, i)\) with \(\phi = \tan^{-1}(ys) \) (see Fig. 1): The surfaces \(s_r = \text{const} \) are spheroids \(E_{s_r} \)

\[
E_{s_r} : \frac{x^2 + y^2}{s_r^2} + \frac{z^2}{s_r^2} = 1, \quad s_r > 0. \tag{2.9}
\]

In the limit \(s_s \to 0 \), \(E_{s_r} \) shrinks to \(E_0 \), whereas for \(s_s \gg b \) it tends to a sphere with radius \(s_r = r \). Similarly, \(s_s = \text{const} \) define a family of one-sided hyperboloids \(H_{s_s} \).
For the positive real field is then obtained by taking the real part of the analytic field, see discussion after (2.10). Henceforth referred to as the “source disk” since it represents the location of the real sources that give rise to the solution in (2.12) (see Sec. V).

The solution in (2.12) has the general properties of a PB (a collimated space–time wave-packet) that emerges from r_0 (here, the origin) and propagates along the beam axis b (here, the positive z-axis). Confinement along the beam axis is affected by the pulse shape of ψ while transverse confinement is due to the general property of analytic signals which decay in the lower half of the complex τ plane as the imaginary part of τ becomes negative. Thus, the beamwidth depends on: (a) the rate of decay of ψ in the lower half of the complex τ plane (that typically depends on the pulse length), and (b) on the rate of increase of $\text{Im} \tau$ in (2.13) away from the z axis [following the discussion in (2.10), $\text{Im} \tau$ vanishes on the positive z axis and increases away from it]. The weakest signal is obtained along the negative z axis where $\text{Im} \tau = -2bc$.

Thus, the ellipsoids \mathcal{E}_s of (2.9) are the wavefronts associated with the time-delay $\gamma_t = s/c$, while the hyperboloids \mathcal{H}_{s_i} of (2.10) are equi-amplitude surfaces.

1. Parametrization of the real signal

To further understand the properties of the real PB field, we introduce the real signal $\psi_{\gamma_t}(t)$ and its Hilbert transform $\bar{\psi}_{\gamma_t}(t)$ via [see (A3)]

$$\psi(t - i \gamma_t) = \psi_{\gamma_t}(t) + i \bar{\psi}_{\gamma_t}(t), \quad t \in \mathbb{R}. \quad (2.14)$$

One finds that

$$p = \text{Re} p = [s, \psi_{\gamma_t}(t - \gamma_t) + s, \bar{\psi}_{\gamma_t}(t - \gamma_t)]|s|^2, \quad (2.15)$$

where from (2.13b) $\gamma_t = s/c$ and $\gamma_i = (b + s_i)/c$. Thus, along a given hyperboloid \mathcal{H}_{s_i} [see (2.10)], the signal is gradually Hilbert transformed from $\psi_{\gamma_t}(t - \gamma_t)/s_i$ in the near zone, where $s_i - r > b$, to $\psi_{\gamma_t}(t - \gamma_t)/s_i$ in the far zone, where $s_i - r > b$.

2. Paraxial parametrization for collimated PBs

Points near the positive beam axis, where the PB is strong, are of particular importance. From (2.5b) and (2.6) we have for $p \ll \sqrt{z^2 + b^2}$,

$$s \approx + \left(z - ib \right) + \frac{i}{z} p^2 \left(z - ib \right), \quad z \ll 0 \quad (2.16)$$

(note the discontinuity at \mathcal{E}_0). Substituting this into (2.12), the field near the positive z axis is given by

$$p(r, t) = \psi(t - z/c - \frac{i}{z} p^2 (c(z - ib))/(z - ib). \quad (2.17)$$
To parametrize this field, we write $1/(z-ib) = 1/R(z) + iI(z)$, where
\[R(z) = z + b^2/tz, \quad I(z) = b(1 + (z/b)^2), \] (2.18)
thereby obtaining from (2.13)
\[\gamma_t = z/c + \rho^2/2cR(z), \quad \gamma_r = \rho^2/2cI(z). \] (2.19)
Thus, $R(z)$ is identified as the radius of curvature of the PB wavefront, while $I(z)$ controls the paraxial decay away from the axis. For z/b, $I(z)$ is to leading order independent of z and the PB propagates essentially without decay or spreading, while for z/b, $\gamma_t \sim (b/2c)(\rho/z)^2$, and the wave packet diverges along the cones $\rho/z = \text{const.}$ [see (2.25)].

The real PB field along the z axis is given now by
\[p = [z^2 + b^2]^2 \psi(t - \gamma_r - b \bar{\psi}_r(t - \gamma_r)]/[z^2 + b^2], \] (2.20)
while γ_t, γ_r are now given in (2.19). Thus, in the near zone, the real signal is dominated by $-b^{-1} \bar{\psi}_r(t - \gamma_r)$, but as z increases, it is gradually Hilbert transformed, and finally for z/b it is dominated by $-\psi_r(t - \gamma_r)$.

3. Far-field pattern

Another important limit occurs in the far zone for r/b where from (2.5b)
\[s = r - ib \cos \theta, \quad \cos \theta = z/r. \] (2.21)
Substituting this into (2.12), we obtain
\[p(r,t) = r^{-1} \psi(t - r/c - i \gamma(\theta)), \quad \gamma(\theta) = (1 - \cos \theta)b/c. \] (2.22)
The function $\text{Re} \psi(t - \gamma(\theta))$ is the time-dependent radiation pattern. It is strongest for $\theta = 0$ and decays to a minimum at $\theta = \pi$ [see the diffraction angle Θ in (2.27)].

4. Example: Analytic PB

The PB solutions may accommodate any analytic pulse shape. It is useful at this stage to consider an example of a particular pulse shape, namely the n-times differentiated analytic δ pulse
\[\psi(t) = \delta^{(n)}(t - i \frac{1}{2} T) = \frac{(-i)^n!}{\pi i (1 - iT)^{n+1}}, \quad T > 0. \] (2.23)
It is sometimes convenient to multiply the pulses in (2.23) by $e^{ia \phi}$ with $0 < a < \pi$ in order to change the balance between the signal and its Hilbert transform when one considers the real part of the field.

The parameter T in (2.23) is a measure of the pulse length. The spectrum of these pulses is $\hat{\psi}(\omega) = (-i \omega)^n e^{-i \omega T/2}$ for $\omega > 0$. The derivatives suppress the low frequencies and thus create a more localized (faster-decaying) PB in both the axial and transversal directions. In many applications, using $n \geq 2$ is required because of the higher collimation properties of the resulting PB.\cite{26,30} Furthermore, as will be discussed in Sec. III [see (3.16)], PB with frequency components below $\omega < c/t$ are difficult to excite.

For simplicity, however, we discuss here the PB properties for the case $n = 0$ and $\alpha = 0$. The real waveforms in (2.14) are given by
\[\psi_{\gamma_1}(t) = \text{Re} \delta(t - i(\frac{1}{2} T + \gamma_1)) = \pi^{-1} \frac{t}{t^2 + (\frac{1}{2} T + \gamma_1)^2}. \] (2.24a)
\[\bar{\psi}_r(t) = \text{Im} \delta(t - i(\frac{1}{2} T + \gamma_1)) = -\pi^{-1} \frac{t}{t^2 + (\frac{1}{2} T + \gamma_1)^2}. \] (2.24b)
For a given γ_1, the half-amplitude pulse width in (2.24a) is $(T + 2\gamma_1)$ and the peak amplitude (at $t = 0$) is $\pi^{-1}(\frac{1}{2} T + \gamma_1)^{-1}$. Thus, the waveform is strongest and shortest for $\gamma_1 = 0$ (the beam axis), and decays as γ_1 grows away from the axis. The half-amplitude beamwidth is therefore obtained when $\gamma_1 = \frac{1}{2} T$. Substituting (2.19) for γ_1 in the paraxial zone, the beam diameter is found to be
\[W(z) = W_0 \sqrt{1 + \frac{(z/b)^2}{2}}. \quad W_0 = 2\sqrt{cTb}. \] (2.25)
One observes that for $0 < z < b$ the beamwidth remains essentially constant, while for $z > b$ it opens up along a diffraction cone whose angular $\Theta = W(z)/z$ is parametrized by $\Theta = 2\sqrt{cTb}$. Collimated PB with $\Theta \ll 1$ are obtained when $cTb \ll 1$. (2.26)

Note also that, under this collimation condition, the effective width of the source distribution, which is roughly given by W_0 [see (2.25)], is much narrower than the “exact” source disk E_0 whose radius is b. One obtains the following rule of thumb for the relation between the pulse length T, the beamwidth at the waist W_0, the diffraction angle Θ, and the collimation distance b
\[(W_0/b)^2 = \Theta^2 = 4cTb \ll 1. \] (2.27)
Thus, the field properties are controlled by the PB parameter cTb. Similar properties are obtained for other pulse types, such as nonmodulated or modulated Gaussian pulses or modulated δ pulses.

Figure 2 depicts cross sectional snapshots in the (z, p) plane of the axially symmetric p field of (2.12). The pulse used is a differentiated analytic delta pulse $\psi(t) = -e^{\alpha \phi} \delta(1)(t - i\frac{1}{2} T)$ of type (2.23) and a PB parameter $cTb = 10^{-3}$ that yields a collimated PB [see (2.26)]. (Recall that it is advantageous to deemphasize the low frequencies further by using $\delta^{(2)}$ and a smaller parameter cTb.) As mentioned in (2.23), the term $e^{\alpha \phi}$ is used to change the balance between the signal and its Hilbert transform. Here, α has been chosen to be $\pi/3$, which provides the “niciest” result (this value also provides the clearest results of the power flux analysis in Fig. 3).

The field in Fig. 2 is plotted at times $cTb = 0.2, 1,$ and 2, where the PB is localized, respectively, in the near zone $z = 0.2b$, at the collimation distance $z = b$, and in the “far” zone $z = 2b$. Note the Hilbert transform exhibited by the waveforms in the transition from the near to the far zones [recall (2.15) and (2.20)]. To demonstrate the effect of the collimation parameter cTb, we also show in Fig. 2(d) the
CSPB field for the parameter $cTb=10^{-1}$. In this case the solution in (2.12) is still exact but the parametrization in (2.25)–(2.27) is not valid (note the different space–time and field-amplitude scales used in this case).

III. THE POWER AND ENERGY FLUX

A. The v field

The v field is needed in the calculation of the power flux [see (3.7)]. Outside the source domain, v is calculated from p of (2.12) via $v=-\phi^{-1}_1\nabla p$, giving

$$v(r,t) = \nabla s \{ \psi(\tau)/cs + \psi^{-1}(\tau)/s^2 \},$$

$$\nabla s = (r-ib)/s,$$

where $\psi^{-1}(t) = \int_{-\infty}^{t} dt' \psi(t')$ and τ is defined in (2.13). The real (physical) expression for v is [cf. (2.15)]

$$v = \nabla s \{ p/c + [(r^2-b^2)\psi_i^{-1} - 2zb\bar{\psi}_i^{-1}]/|s|^4 \}$$

$$- \nabla s \{ p/c + [2zb\psi_i^{-1} + (r^2-b^2)\bar{\psi}_i^{-1}]/|s|^4 \},$$

(3.3)

where $p=(s,\psi_i+s,\bar{\psi}_i)/c|s|^2$ is the real p field [see (2.15)], the overbars denote Hilbert transforms of the respective waveforms [see (2.14)], and $\psi_i, \bar{\psi}_i$ stands for $\psi_i(t-\gamma_t)$, etc. Note in (3.3) that ∇s_r represents outward power flow lines normal to the wavefronts E_r, while ∇s_i represents transverse flow lines along the wavefronts, leading from the positive z axis to the negative z axis. In deriving (3.3) we used the relations in (B1). Expressions for $\nabla s_{r,i}$ are given in (B2)–(B4).

In order to estimate the role of the various terms in (3.1) and (3.3) we assume that ψ is a short pulse with pulse length T, so that near the positive z axis where $\gamma_i=0$ we have $\psi^{-1}(\tau)/\psi(\tau) \sim O(T)$. Recalling from (2.16) that near the axis $s=z-ib$, we find that the ratio between the second and first terms inside the braces in (3.1) is
In the far zone, the ratio on the right-hand side of (3.4) is much smaller than unity. Under the collimation condition $cT \ll b$ in (2.26), this term is much smaller than unity also in the near zone (i.e., along the entire z axis). Under these conditions, the terms containing ψ^{-1} in (3.1) may be neglected for all $z > 0$ so that (3.3) becomes

$$\mathbf{v} = (\nabla s_r) p/c - (\nabla s_r) \bar{p}/c,$$

where p is given by (2.20) for points near the z axis. Note from (2.16) with (2.18) that near the z axis $\nabla s_r = \hat{z} + p/R(z) \rightarrow \hat{z}$ and $\nabla s_r = \mathbf{p}/s(z) \rightarrow \mathbf{0}$, where $\mathbf{p} = (x, y)$. Recall also that ∇s_r is orthogonal to the wavefronts whose local radius of curvature is $R(z)$.

In the far zone, we note from (2.21) that $\nabla s \rightarrow \mathbf{r}$, hence

$$\mathbf{v} \approx \mathbf{r} p/c,$$

where here p is given in (2.22).

B. The power and energy flux

The power flux is defined as

$$\mathbf{P}(\mathbf{r}, t) = p(\mathbf{r}, t) \mathbf{v}(\mathbf{r}, t).$$

The expression obtained by inserting (2.15) and (3.3) is quite complicated. It is therefore convenient to explore the energy flux

$$\mathbf{E}(\mathbf{r}) = \int_{-\infty}^{\infty} dt \mathbf{P}(\mathbf{r}, t).$$

One finds that

$$\mathbf{E}(\mathbf{r}) = \sum_{n} \psi_{\gamma_n} \psi_{\gamma_n}^* \mathbf{r} \times (s \nabla s - s \nabla s_i)/|s|^4,$$

where $\langle f, g \rangle = \int_{-\infty}^{\infty} dt f(t) g(t)$ for any two real functions f and g. In deriving (3.9) we used the following relations which apply for any real f and its Hilbert transform $\tilde{f}(f, \tilde{f}) = \|f\|^2, \langle f, \tilde{f} \rangle = \|f\|^2, \langle \tilde{f}, \tilde{f} \rangle = 0$, and $\langle f, 0 \rangle = 0$ (since f vanishes at $t = \pm \infty$).

In the far zone, the second term in (3.9) vanishes and the outward radiative energy is described only by the first term. Both terms are large in the near zone, in particular near B where s vanishes, and the field there dominated by strong reactive fields. The concept of time-dependent reactive field and energy has been introduced and analyzed in Ref. 39 in the context of electromagnetic fields. Using time-dependent spherical wave (multipole) expansion, it has been shown that the time-dependent power radiated by an antenna consists of radiative and reactive pulses. The radiative power is a positive outgoing pulse and is unchanged as it propagates away from the source (carries the same energy). The reactive power pulse, on the other hand, is strong in the near zone and vanishes in the far zone. It carries no net energy: at early times it propagates out and builds up a transient energy near the source, but after the radiative pulse has passed it discharges the energy back to the source region.

This phenomenon is demonstrated in Fig. 3, which depicts snapshots of \mathbf{P}. In order to be able to discern the off-axis properties of \mathbf{P} and the low-frequency phenomena discussed in (3.16) below, the PB parameters have been cho-

FIG. 3. Snapshots of the power flow \mathbf{P} and the energy flux \mathbf{E} at times $ct/b = 0.6$ and 1.2. Here, $\psi(t) = e^{i \delta(t)} (t - \frac{1}{2} T)$ as in Fig. 2, but with $cT/b = 1.2$ (highly noncollimated PB) and $a = \pi/5$. (a) and (c): Distributions of \mathbf{P} in the (z, ρ) plane (all axes are normalized with respect to b). For clearer interpretation, the results are superimposed on the ellipsoidal wavefront corresponding to the co-ordinate system of Fig. 1. The arrows describe the size and direction of \mathbf{P}.

(b) and (d): snapshot of \mathbf{P}_z on the z axis at the same times.
inward flow of reactive energy is readily observed as the inward flow near \(B \). As discussed in (3.16) below, this inward flow is strong near \(B \), but the low-frequency components propagate inward also in front of the entire source disk \(E_0 \) (see the shaded zones in Fig. 1). Indeed, in view of the \(^{2+}\) relatively low-frequency content of the signal \(\psi \) chosen, the inward flow of reactive energy is readily observed as the negative part of \(P_z \) behind the leading part of the signal in Fig. 3(d).

C. Frequency-domain analysis of the energy flow

We shall explore the constituents discussed above in the frequency domain (FD). The FD expressions corresponding to the field solutions in (2.12) and (3.1) are

\[
\hat{p}(r, \omega) = \hat{\psi}(\omega) s^{-1} e^{i k s + i \omega t'} = \hat{\psi}(\omega) s^{-1} e^{i(\omega t + \gamma z)},
\]

\[
\hat{v}(r, \omega) = \nabla [c^{-1} - (i \omega s)^{-1}] \hat{p}(r, \omega),
\]

where \(k = \omega/c \) and the carets denote field constituents with a suppressed time dependence \(e^{-i \omega t} \) with \(\omega > 0 \) (for \(\omega < 0 \), one should take the complex conjugate of these expressions). Here \(\hat{\psi}(\omega) \) is the (rather arbitrary) spectrum of the pulse \(\psi(t) \). In the high-frequency regime such that \(kb \gg 1 \), the solution in (3.10) has the characteristics of a time-harmonic Gaussian beam (see, e.g., Refs. 4–7 and 2) but we shall not dwell here on this interpretation.

Using (3.10) in conjunction with (3.7) and (3.8), we obtain

\[
E(r) = \frac{1}{\pi} \text{Re} \int_0^\infty d\omega \hat{p}(r, \omega) \hat{\Psi}^*(r, \omega) = \frac{1}{\pi} \text{Re} \int_0^\infty d\omega |\hat{\psi}|^2 |s^{-1} e^{-2i\omega y(c^{-1} + (i \omega s)^{-1})\nabla s^*},
\]

where the asterisks denote a complex conjugate.

Next, we consider the total energy radiated out of the spheroidal wavefront \(E_{\psi} \).

\[
E_{\psi}(s_r) = \int_{E_{\psi}} dS \cdot E(dS),
\]

where \(dS \) is an area element on \(E_{\psi} \). Substituting (3.11), we note that on \(E_{\psi} \) we have \(\nabla s \cdot dS = |\nabla s_r| dS \), where \(|\nabla s_r| \) is given in (B2) and \(dS = h_i h_j dS_i dS_j/d\phi \), where the metric coefficients are given in (B5). The \(\phi \)-integration yields \(2\pi \). Recalling that \(s_i \) changes from \(-b\) on the positive \(z \) axis to \(b \) on the negative axis, we end up with

\[
E_{\psi}(s_r) = \int_0^\infty d\omega \int_{-b}^b ds_i E_{\psi}(s_r, s_i, \omega)
\]

(3.13a)

with

\[
E_{\psi}(s_r, s_i, \omega) = \frac{2}{bc} |\hat{\psi}|^2 e^{-2k(b + s_i)} \frac{b^2 + s_r^2}{s_r^2 + s_i^2} \left[1 + \frac{s_i/k}{s_r^2 + s_i^2} \right].
\]

(3.13b)

\(E_{\psi} \) is the spectral density of the “outward” (i.e., the \(s_i \)) component of \(E \).

The \(s_i \) integral in (3.13) may readily be evaluated by rewriting (3.13b) in the form

\[
E_{\psi}(s_r, s_i, \omega) = -\frac{1}{abc} |\hat{\psi}|^2 (b^2 + s_r^2) \frac{\partial}{\partial s_i} \left[\frac{e^{-2k(b + s_i)}}{s_r^2 + s_i^2} \right],
\]

(3.14)

which provides a closed-form result for the outward flow between any two hyperbolas \(H_{s_i} \). Integrating over the full domain (i.e., from \(s_i = -b \) to \(b \)), we end up with

\[
E_{\psi} = \frac{\int_0^\infty d\omega |\hat{\psi}|^2 \frac{1 - e^{-4kb}}{abc}}{a},
\]

(3.15)

i.e., \(E_{\psi} > 0 \) and is independent of \(s_i \) as expected. Note that under the collimation condition in (2.26), most of the signal energy is concentrated in the high-frequency range \(kb \gg 1 \) where the exponent in (3.15) is negligible.

While the total energy \(E_{\psi} \) flows outward, the local energy flux \(E_{\psi} \) may, in some regions, flow inward. From (3.13b) the region \(D_{\psi}(\omega) \) of inward energy flow is described by

\[
D_{\psi}(\omega) = \frac{s_i/k}{s_r^2 + s_i^2} < -1.
\]

(3.16)

In general, \(D_{\psi}(\omega) \) is located in front of \(E_0 \) (where \(s_i < 0 \)). A detailed analysis of (3.16) reveals that for frequencies such that \(kb \gg 1 \), \(D_{\psi}(\omega) \) has the shape of a ring in front of \(E_0 \) whose boundary on \(E_0 \) is given by \(-k^{-1} < s_i < 0 \) (see the dark-shaded region in Fig. 1). In particular, in the high-collimation range where \(kb \gg 1 \), this ring becomes concentrated near \(B \). For low frequencies such that \(kb < 1 \), on the other hand, \(D_{\psi}(\omega) \) covers the entire front face of \(E_0 \) (see the light-shaded region in Fig. 1). Recall though that at any given frequency, the total energy flows outward through \(E_{\psi} \), as implied by (3.15). It follows that at low frequencies, the energy is emitted by the back face of \(E_0 \): part of it flows around \(E_0 \) and is absorbed by the front face, while the other radiates outward through \(E_{\psi} \).

The analysis above implies that for practical synthesis of the CSPB, the frequency spectrum of \(\psi \) should be concentrated at frequencies such that \(kb \gg 1 \). Recalling that the effective width of the aperture in this range is \(W_0(\omega) = \sqrt{b/k} \) [cf. (2.25) and Ref. 2], it follows that for \(kb > 2 \), \(W_0 \) is narrower than the inner radius of \(D_{\psi}(\omega) \) which is given by \(s_i = -k^{-1} \) [see (3.16)]. Under these conditions the aperture can be truncated about the effective aperture \(W_0 \) of (2.25), giving essentially the same field as the exact CSPB which is generated by the entire source disk \(E_0 \).
IV. SURFACE SOURCES AND EQUIVALENT SOURCES

We start by recalling the field discontinuity conditions implied by (1.1). Let S be a given surface carrying surface sources (σ_s, f_s), i.e.,

$$\sigma = \sigma_s(r, t) \delta(n), \quad \mathbf{f} = \hat{n} f_s(r, t) \delta(n),$$ \hspace{1cm} (4.1)

where $r \in S$, \hat{n} is the normal to S at r, pointing from side 1 to side 2 of S, and n is the coordinate along \hat{n}. The field discontinuities implied by these sources are found from (1.1) to be

$$\hat{n} \cdot (v_2 - v_1) = \sigma_s, \quad p_2 - p_1 = \hat{n} \cdot f_s = f_s,$$ \hspace{1cm} (4.2)

where (v_1, p_1) are the limiting value of (v, p) at side i of S.

Next, let S be a closed surface that encloses all the sources to the field. We would like to synthesize the field outside S due to the sources inside S in terms of surface sources on it. As will be shown, there exist various realizations of these sources, of particular interest are those involving only σ or \mathbf{f} sources. These alternative realizations are obtained by choosing inside S an arbitrary solution of the homogeneous field equation, denoted as (p^{in}, v^{in}). Using (4.2), the surface sources are now given by

$$\sigma_s = \hat{n} \cdot (v - v^{in})|_S, \quad f_s = (p - p^{in})|_S,$$ \hspace{1cm} (4.3)

where \hat{n} is an outward normal to S. Substituting (4.3) into (1.2), we obtain

$$p = \int_S dS' \frac{1}{4\pi R} \left[(\sigma_s) + (c^{-1}[f_s] + R^{-1}[f_s]) \hat{n}' \cdot \hat{R} \right].$$ \hspace{1cm} (4.4)

This integral synthesizes the true field (p, v) at points outside S and the arbitrarily chosen field (p^{in}, v^{in}) at points inside S.

A. Kirchhoff realization

As mentioned before, different source realizations are generated by choosing different homogeneous solutions (p^{in}, v^{in}) in (4.3). One such choice,

$$p^{in} = 0, \quad v^{in} = 0,$$ \hspace{1cm} (4.5)

gives rise to what will be identified below as the Kirchhoff realization. Using (4.5) and (4.3), the Kirchhoff sources are

$$\sigma_s = \hat{n} \cdot v|_S = -\partial_\nu \partial^{-1} p|_S, \quad f_s = p|_S,$$ \hspace{1cm} (4.6)

where in the second expression for σ_s, we used (1.1b) to replace the limiting value of v outside S by the value of p there. When the sources in (4.6) are substituted into (4.4), we obtain the true field outside S and a null contribution inside S.

Using (4.6) in (4.4), one obtains the conventional Kirchhoff integral representation for the radiating field in terms of the values of p and $\partial_\nu p$ on S, which is usually obtained by using the scalar wave equation for p in conjunction with Green's theorem.\(^{40}\) Thus, Eq. (4.6) provides the surface source realization of this formula.

B. Integral equations for alternative source realizations

Equation (4.4) synthesizes the field outside S due to the sources inside S in terms of both σ_s and f_s sources. Alternative formulations are obtained if one chooses different values for (p^{in}, v^{in}). We shall look, in particular, for realizations such that either f_s or σ_s in (4.3) vanishes identically on S. These sources are determined via an integral equation as described below.

We start by expressing the field (4.4) for the special case of the sources in (4.6) as a sum of two terms: $p = p^\sigma + p^f$ denoting, respectively, the fields due to the f_s and σ_s sources in (4.6). Substituting (4.6) in (4.4), these fields may be expressed in terms of the known field p outside S

$$p^f = \int_S dS' \frac{1}{4\pi R} (c^{-1}[\dot{p}] + R^{-1}[\dot{p}]) \hat{n}' \cdot \hat{R},$$ \hspace{1cm} (4.7)

$$p^\sigma = \int_S dS' \frac{1}{4\pi R} [\partial_\nu p].$$

The σ_s-only realization involves the σ_s sources in (4.6) plus an additional term denoted as p^σ_f that gives rise to the known field p^f outside S. σ_s^f is therefore calculated via the integral equation on S

$$\int_S dS' \frac{1}{4\pi R} [\sigma_s^f] = p^f(r, t), \quad r, r' \in S,$$ \hspace{1cm} (4.8)

where p^f is given in (4.7) in terms of the known field p on the outer side of S. Note that the kernel on the left-hand side of (4.8) is singular at $r' = r$, but this singularity can be extracted explicitly using principal value integration.

The solution of (4.8) is not unique. Recalling from (4.3) that the internal field (p^{in}, v^{in}) in the σ_s-only realization satisfies $p^{in}|_S = |p|_S$ where p is the known pressure field outside S, it follows that the null space of (4.8) is described by internal field solutions that satisfy $p^{in}|_S = 0$. Such solutions are possible at discrete frequencies ω_n, $n = 1, 2, \ldots$, which are the internal resonance frequencies of S for the “soft” boundary condition $p^{in}|_S = 0$. The solution of (4.8) can therefore be augmented by a discrete set of eigensolutions of the form $\sigma_s^f(r, t) = \sum_n \mathfrak{R} \alpha_n \sigma_s(r) e^{-i\omega_n t}$, which do not affect the field outside S. A unique solution is obtained by imposing another criterion, say a minimum energy condition. We shall not consider this subject here.

Similarly, the f_s-only realization involves the f_s sources of (4.6) plus an additional term f_s^σ that generates the p^σ field outside S. f_s^σ is found via the integral equation on S

$$\int_S dS' \frac{1}{4\pi R} (c^{-1}[f_s^\sigma] + R^{-1}[f_s^\sigma]) \hat{n}' \cdot \hat{R} = p^\sigma(r, t), \quad r, r' \in S,$$ \hspace{1cm} (4.9)

where p^σ is given in (4.7) in terms of the known field p on the outer side of S. As discussed after (4.8), the solution of (4.9) is not unique: its null space is described by the internal resonance frequencies associated the “hard” boundary condition $\partial_\nu p^{in}|_S = 0$.

1887 J. Acoust. Soc. Am., Vol. 107, No. 4, April 2000

Heyman et al.: Physical source realization of pulsed beams 1887

\(^{40}\) Heyman et al.: Physical source realization of pulsed beams 1887
V. SOURCE DISTRIBUTIONS FOR THE CSPB

It is convenient to consider a source realization on the ellipsoid E_s of (2.9) for a given $s_r>0$. Substituting (2.12) and (3.1) into (4.6), we obtain

$$\sigma_s = |\nabla s_i| \text{Re} \{ \psi(\tau) / c s + \psi^{(-1)}(\tau) / s^3 \},$$

$$f_s = \text{Re} \{ \psi(\tau) / s \},$$

where s, τ, and $|\nabla s_i|$ are given in (2.5b), (2.12), and (B2), respectively. These expressions are functions of s_i, which serves as a coordinate along E_{s_i}.

Explicit expressions are obtained for the special case when E_{s_i} shrinks to the source disk E_0 of (2.7). Denoting values on the front and back faces of E_0 by the superscript \pm, respectively, we find that

$$s^\pm = \mp i \eta, \quad \gamma^\pm = i(b \mp \eta) / c, \quad \text{where} \quad \eta = \sqrt{b^2 - \rho^2}. \quad (5.2)$$

Substituting (2.12) and (3.1) into (4.6), we obtain

$$\sigma_s^\pm = b \eta \text{Re} \{ \pm i \psi[t - i(b \mp \eta)] / \eta c - \psi^{(-1)}[t - i(b \mp \eta)] / \eta^2 \}. \quad (5.3a)$$

Fig. 4. Waveforms of the surface sources in (5.1) on $S=E_s$ with $s_r=0.1b$. The waveforms are depicted in the (ct, s_i) plane with s_i, the coordinate along E_i, varies from $-b$ on the positive z axis to b on the negative axis. (a) and (b): σ_1; (c) and (d): σ_2; (e) and (f): f_s. The pulse ϕ is the differentiated analytic δ used in Fig. 2 with high-collimation parameter $cT/b = 10^{-3}$.

\[\text{(a) } \sigma_{1s} \quad \text{(b) Expanded view of (a)} \]

\[\text{(c) } \sigma_{2s} \quad \text{(d) Expanded view of (c)} \]

\[\text{(e) } f_s \quad \text{(f) Expanded view of (e)} \]
where the upper and lower signs correspond to sources on the front and back face of \mathcal{E}_0, respectively, while f_{z_s} in the last expression denotes the z component of the f_s source on the front and back faces of \mathcal{E}_0. Note also the algebraic singularity of the sources at $r=b$ on the circle \mathcal{B}.

Special attention should be given to the collimated case which is the most important one for practical applications. We note that in this case the relevant part of the source is concentrated within the effective aperture W_0 [2.25] on the front face of \mathcal{E}_0, which is much narrower than the entire disk \mathcal{E}_0 [see (2.27)]. Furthermore, under the collimation condition the contribution of the second term in σ_s is negligible [see the discussion in (3.4)]. Finally, from (5.2) it follows that for $\rho \ll b$, $\gamma^+ = \rho^2/2c$, while $\gamma^- = 2ib/c$, hence in (5.3) $\sigma_s^+ \gg \sigma_s^-$ and $f_{z_s}^+ \gg f_{z_s}^-$. Thus, Eq. (5.3) reduces to the simplified explicit expression for effective sources

$$c\sigma_s = f_{z_s} = b^{-1} \Re\{i\psi(t - i\rho^2/2c)\}, \quad \rho \sim O(W_0). \quad (5.4)$$

These simplified sources generate a strong PB field along the positive z axis that behaves paraxially like the PB in (2.17) [or (2.20)]. In all other directions, the resulting field is weak but due to the approximation in (5.4) it does not have the exact known form of (2.12).

Alternatively, one may use only the σ_s or the f_s sources in (5.4). This generates collimated PB along both the positive and the negative z directions: From (4.4), the σ_s source radiates symmetrically in both directions while the f_s source radiates antisymmetrically. Taken together, the contributions of σ_s and of f_s enhance each other in the positive direction and cancel each other in the negative direction, thereby radiating a strong PB field only along the positive z axis and a weak field elsewhere.

Figures 4 and 5 depict the surface sources of the CSPB realized on an ellipsoidal wavefront $\mathcal{S} = \mathcal{E}_s$ as in (5.1). Here, s_i is taken to be $0.1b$ so that \mathcal{E}_{s_i} is close to the branch disk \mathcal{E}_0 (see Fig. 1). The waveforms are depicted in the (ct, s_i) plane with s_i being a coordinate along \mathcal{E}_{s_i} (s_i varies from $-b$ on the positive z axis to b on the negative axis). The first and
second terms in (5.1a) are termed \(\sigma_1 \) and \(\sigma_2 \), respectively. The pulse \(\psi \) is the differentiated analytic \(\delta \) used in Figs. 2 and 3. In Fig. 4 we use a short pulse with \(cT/b = 10^{-3} \) which yields a collimated PB, while in Fig. 5 \(cT/b = 1 \), yielding a noncollimated field. Note that the effective width of the source distribution in Fig. 4 agrees with the estimates for \(W_0 \) in (2.25); hence, the sources there can be truncated and described by the simpler expressions in (5.4). In Fig. 5, on the other hand, the source distribution is much wider. In this case one also observes the relatively strong sources at points near \(\mathcal{E}(s_i \approx 0) \), which are insignificantly small under the collimation condition in Fig. 4. These sources become stronger for smaller \(s_i \), and become singular when \(S \) shrinks to the branch disk \(\mathcal{E}_0 \), yet their contribution is insignificant in the collimation condition.

VI. SUMMARY AND CONCLUSIONS

Our aim in the present paper has been to explore this physical source realization of the CSPB. This has been done within the framework of the acoustic field, by deriving expressions for the acoustic source distributions and by exploring the power and energy flux near these sources. The surface sources have been derived via the field equivalence theorems in Sec. IV. The exact source solutions derived in (5.1) [or (5.3)] generate the globally exact CSPB. Yet, from a practical point of view special emphasis has been given to the parameter range \(cT \ll b \) [see (2.26)]; \(T \) is the pulse length and \(b \) is the collimation distance) where the CSPB is well collimated: in this special case the CSPB can be realized effectively by the simple truncated source distribution in (5.4) whose spatial support \(W_0 \) of (2.25) is much smaller than the source support of the exact CSPB.

In order to further clarify the properties of source realization, we have also explored the power flux near the sources. It has been shown [see (3.16)] that at high frequencies such that \(kb \gg 1 \) (\(k \) is the wave number) the energy is emitted by a narrow aperture on the front face of the source disk \(\mathcal{E}_0 \). At low frequencies, on the other hand, the energy is emitted by the back face of \(\mathcal{E}_0 \); part of it flows around \(\mathcal{E}_0 \) and is absorbed by the front face, while the rest radiates outward through \(\mathcal{E}_s \). Thus, for practical synthesis the frequency spectrum of the CSPB should be concentrated in the high-frequency regime, which supports the conclusions of the preceding paragraph.

ACKNOWLEDGMENTS

This work is supported in part by the U.S. Air Force Office of Scientific Research under Grant No. F49620-98-C-0013, managed by The Virginia Center for Signals and Waves, and in part by the Israel Science Foundation under Grant No. 404/98.

APPENDIX A: ANALYTIC SIGNALS

In order to deal with the complex propagation delays implied by the complex sources, one needs to use analytic signals that can accommodate complex time variables. For a given real signal \(\psi(t), \ t \in \mathbb{R} \), with frequency spectrum \(\hat{\psi}(\omega) \), the dual analytic signal \(\psi(\tau) \) is defined via the one-sided inverse Fourier transform

\[
\psi(\tau) = \frac{1}{\pi} \int_0^\infty d\omega \, e^{-i\omega\tau} \hat{\psi}(\omega), \quad \text{Im} \tau \leq 0. \tag{A1}
\]

It follows that \(\psi(\tau) \) is an analytic function in the lower half of the complex \(\tau \) plane. This function may also be defined directly from the real data \(\psi(t) \) for real \(t \) via

\[
\psi(\tau) = \frac{1}{\pi} \int_{-\infty}^\infty dt \, \frac{\psi(t)}{\tau-t}, \quad \text{Im} \tau \leq 0. \tag{A2}
\]

From (A2), the limit of \(\psi \) on the real \(t \) axis is related to the real signal \(\psi(t) \) via

\[
\psi(t) = \psi(t) + i \hat{\psi}(t), \quad t \ \text{real}, \tag{A3}
\]

where

\[
\hat{\psi}(t) = -\frac{1}{\pi} \int_{-\infty}^{\infty} dt' \frac{\psi(t')}{t-t'}
\]

is the Hilbert transform, with \(\mathcal{P} \) denoting Cauchy’s principal value. The real signal for real \(t \) can therefore be recovered via \(\psi(t) = \text{Re} \hat{\psi}(t) \).

Thus, if \(p(r,t) \) is an analytic solution of the time-dependent wave equation, then both \(p_r = \text{Re} p \) and \(p_i = \text{Im} p \) are real solutions of the wave equation. Henceforth, we shall only consider \(p_r \) since \(p_i \) or any other linear combination of \(p_r \) and \(p_i \) can be obtained by multiplying \(p \) by a complex constant and then taking the real part.

APPENDIX B: ADDITIONAL PROPERTIES OF THE OS SYSTEM

From (2.8), one may readily infer the following relations:

\[
s_i^2 - s_j^2 = r^2 - b^2, \quad s_is_j = -z b, \tag{B1}
\]

\[
\nabla s_i = (rs_i - bs_j)/|s|^2, \quad |\nabla s_i| = \sqrt{b^2 + s_j^2}/|s|, \tag{B2}
\]

\[
\nabla s_j = -(rs_j + bs_i)/|s|^2, \quad |\nabla s_j| = \sqrt{b^2 - s_i^2}/|s|, \tag{B3}
\]

\[
\nabla \cdot \nabla s_i = 0, \quad \nabla \cdot \nabla s_j = 0 \tag{B4}
\]

and the metric coefficients \(^0_{\gamma \rho} \) along the \((s_i, s_j, \phi) \) coordinates are

\[
h_{s_i} = |s|/\sqrt{b^2 + s_j^2}, \quad h_{s_j} = |s|/\sqrt{b^2 - s_i^2}, \tag{B5}
\]

\[
h_\phi = b/\sqrt{b^2 + s_j^2}, \quad \sqrt{b^2 - s_i^2}.
\]

Heyman et al.: Physical source realization of pulsed beams